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ABSTRACT

A new reduced order model to smulate the dynamics of naturd
circulation features in current and next generation of nuclear power plants
has been developed. Dynamical analysis this new natural circulation BWR
model that alows local pressure dependence of water saturation enthalpy
and includes fundamental and first azimuthal modes for neutronicsis carried
out. Stability boundaries (SBs) and 7.5% oscillation curves (representing
natures of bifurcation along SBs) are plotted in inlet subcooling—external
reactivity parameter space. Stability and bifurcation analyses show that, both
in-phase and out- o - phase oscillations as well as supercritical and subcritical
bifurcations can occur along the SBs.

1. Introduction

Natural circulation is a promising design feature for next generation of BWRs. Safety and
economics of the nuclear reactors can be improved through simplicity and passive features of
the natural circulation design [1].

One of the primary concerns for safe operation of BWRSs is stability. Both natural and
forced circulation BWR systems, however, are susceptible to nuclear coupled density wave
oscillations (DWOs) under certain adverse operating conditions [2]. DWOs can be either
in-phase or out-of-phase type [3]. The former corresponds to global power and flow
oscillations, and is excited by fundamental neutronic mode. The latter corresponds to regional
oscillations (usually power of half of the core oscillates out-of - phase against the other half),
and is an outcome of the first azimuthal mode. For natural circulation systems, experiments



and analytical studies show other instability mechanisms besides DWOs. An important one of
these is flashing-induced oscillation during start-up. Flashing that is boiling in the unheated
riser above the core, is caused due to local pressure drop. Flashing occurs most frequently
under low system pressure during start-up. Jiang et al. [4] indicated that “the maximum void
fraction caused by flashing is about 5% under a system pressure of 1.5 MPa, and about 80%
under 0.1 MPa”

Severa experimental studies of the two-phase natural circulation system have been
reported [5-7]. Although a few analytical studies [4, 89] have been carried out for natural
circulation systems, they are limited in scope due to one or more of the following reasons:

- Many existing system codes are not designed to analyze natural circulation system.
Those suitable to analyze the flashing phenomenon are too cumbersome for
parametric studies.

Existing reduced order models are too simplistic. Hence, some key features of
system dynamics may be lost.
There are limited reduced order analyses of coupled models of thermal-hydraulics,
fuel dynamics and neutronics.

Taking advantage of the two-mode neutronics and sophisticated fuel dynamics model, first
developed by Karve et a [10], we present stability and bifurcation analyses of atwo channel,
nuclear-coupled, natural circulation BWR model. Two-phase thermalhydraulics model is
based on one we reported earlier. This model has been used to study the stability of two phase
natural circulation system (without neutronics) [11].

Reduced order model is presented in Section 2. A brief review of our approach for the
stability and bifurcation analysis of the reduced order model is aso given. Results of stability,
bifurcation and numerical simulations are presented in Section 3, and the last section
concludes the paper.

2. Reduced Order Model

2.1 Thermal-Hydraulic M odel

The system considered in the model is shown in Figure 1. It is comprised of two heated
channels (each of which represents a half of the core), two separate risers above the channels
and a common down comer. A system pressure is imposed by setting the pressure at outlet of
therisers, R, to a fixed value. Some additional system parameters are also shown in the

Figure 1.
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Fig.1 Schematic plot of natural circulation system



The thermal-hydraulic model is based on the following two assumptions:

Saturation enthalpy varies linearly with local pressure. Other thermal properties of

water and steam are constant.

Two phase flow can be modelled by Homogeneous Equilibrium Model (HEM)
Although better assumptions such as quadratic pressure dependence and non-equilibrium
two phase flow models can be applied, they will greatly increase complexity and decrease
computational efficiency of the model.

Three cases, based on the location of the boiling boundary, are considered separately.
These are shown in Figures 2a, 2b and 2c. For case 1, water enthalpy at the core exit is less
than the saturation enthalpy, and flashing occurs in the riser. For case 2, because of relatively
large heat input, water starts boiling in the core. Case 3 is a degenerate case, in which water
enthalpy is less than the saturation value at the channel exit, but greater at the entrance of the
riser due to local pressure loss.

Non-dimensional forms of continuity, energy and momentum partial differential equations
are used to derive the dynamical system. Note that pressure deperdence of water saturation
enthalpy leads to modified forms of energy and momentum equations [12]. A weighted
residual approach is employed to reduce the PDEs to a set of ODES. Single phase and
two phase regions along the core and riser are discretized by arbitrary numbers of equal-sized
nodes. In each node, spatialy linear trial functions with time-dependent parameters for
enthalpy (saturated or unsaturated), steam quality, and mixture velocity are introduced. ODES
for these time-dependent expansion parameters are derived by integration along the node.
Boiling boundary and its derivative are evaluated by applying the fixed pressure condition at
the outlet of riser. Details of the derivations can be found in reference [12].
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Fig.2 Profiles of water enthalpy and saturation enthalpy for the three cases: 2a) case 1; 2b)
case 2; 2¢) cae 3.

2.2 Fuel Dynamics and Neutronics M odel

The fuel dynamics and neutronics models of Karve et a. [10] are used to couple with the
thermal-hydraulic model. These models retain many key elements of the dynamics of BWR
systems, such as gap heat conduction between fuel pellet and cladding and different heat
convection coefficients for single-phase and two-phase regions, yet are sufficiently ssimple for
large scale parametric analyses. A piece-wise quadratic expansion with time-dependent
parameter is used to represent temperature profiles in the fuel pellet. ODEs of time-dependent
parameters are obtained by application of the variational principle. The neutron and precursor
densities are represented by fundamental and first azimuthal modes with time-dependent



coefficients. ODEs for the four neutronics variables (ng, uo, N1, and u,) are derived through the
?-mode approach. Retaining the first azimuthal mode in the model alows the simulation of
out- of - phase oscillations. ODEs of thermal-hydraulic model and fuel dynamic and neutronics
mode! are coupled via heat flux (represented by N (t) , which is a non-dimensional number

proportiona to the total heat flux inputted into the channel), c., the void reactivity feedback
coefficient, and ¢ , the fuel Doppler reactivity feedback coefficient.

2.3 Poincar é-Andronov -Hopf Bifurcation (PAH-B) Theory and BIFDD

Stability of fixed points of a set of autonomous ODESs, such as those of reduced order
model of BWRs, is determined by its eigenvalue of the Jacobian at the steady-state. If the real
parts of all the eigenvalues are negative, the fixed point is stable, otherwise, unstable. This
result is further extended by PAH-bifurcation theory [13], which states that if the right-most
eigenvalues are a complex conjugate pair and they cross the imaginary axis with non-zero
speed as an operating parameter is changed, there will be periodic solutions (oscillations) in
the vicinity of the SB. Frequencies and amplitudes of the periodic solutions are determined by
the imaginary parts of the eigenvalues and the distance of the operating point from the SB. In
particular, the periodic solutions can be either stable, called supercritical PAH-B, or unstable,
caled subcriticd PAH-B. From the safety point of view, subcriticd PAH-B is more
problematic than supercritical PAH-B, since in the former case the unstable periodic solution
exists on the stable side of the SB, and given large enough perturbation the system even when
operating on the stable side of the SB may evolve into growing amplitude oscillations.

In this study (as in several previous studies), a stability and bifurcation analysis code
BIFDD [14] is utilized to analyze the natural circulation BWR model. Given analytic forms of
ODEs and Jacobian, BIFDD evaluates SBs as well as the nature of bifurcation along them.

3. Results

3.1 Effect of Nodalization Schemes

Coupling among the thermal-hydraulics, fuel dynamics and neutronics introduces extra
feedbacks, which are crucial to the dynamics of the system. However, accurate evaluations of
the feedback signals, the void fraction in the channe and fuel temperature rely on
nodalization scheme described in section 2.1. The higher the number of nodes in each
single-phase or two-phase region, the more accurate is the estimate of the void fraction and
fuel temperature. Large number of nodes on the other hand dramatically increase the number
of phase variables, leading to computational inefficiency. Therefore, an analysis of the impact
of the number of nodes on the results of the stability analysisis carried out first.

Stability boundaries (SBs) are calculated by BIFDD for different nodalization schemes in
the so-called subcooling—reactivity parameter space (Figures 3 and 4) for parameter values
that roughly correspond to the Dodewaard natural circulation BWR. System pressure of these
two caculations are r,;;= 7.0 MPaand R, = 0.4 MPa, respectively. Here, the X axis, r o,

is the external reactivity introduced by control rod movement. They axis, DT, iS the inlet
subcooling (saturation temperature minus inlet temperature). Different nodalization schemes
are characterized by N, which is the number of nodes in each (single phase and two-phase)
region.

Figure 3 shows that at high system pressure, as the number of nodes increases, the SBs
converge, but insufficient nodalization may cause large deviation in both the area of stable
regions and in the shapes of SBs from those obtained using sufficiently large number of nodes.
Compared to the SB of N = 16 case, the one with N = 1 significantly over-estimates the area
of the stable region. As N is increased, the SBs tend to converge. Good convergence of SB is
achieved in regions of low and high r., for the N = 8 case, but the SB may be



over -estimated by as much as 10% in the middle range of 1 .

For the low system pressure case (0.4 MPa), Figure 4 shows a much better convergence.
Even the SB for the N = 4 case is very close to that of the converged SB. SBs for the N =8
and N = 16 cases are too close for most values of r,, to be distinguished from each other.

Results presented in the rest of the paper were obtained using N = 8.
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3.2 In-Phase and Out-Of-Phase Oscillations

A parameter space is divided into stable and unstable regions by a stability boundary. In the
unstable region at lease one (real or complex conjugate pair) eigenvalues has positive real part.
Figure 5 and 6 show SBs (solid lines) in pTiye—r e« SPace for system pressure of 7.0 MPa

and 0.4 MPa, respectively. Nature of instability that results, as these SBs are crossed, may



however vary significantly along different parts of the SB. As shown earlier for forced
circulation BWR system, the two rightmost pair of eigenvalues can be associated with
in-phase and out-of-phase oscillations [15]. The relative magnitude of the elements in the
corresponding eigenvectors indicate as to which mode—fundamental or first azimuthal—will
become unstable as that eigenvalue crosses the imaginary axis. It was shown thet the
eigenvalue pair that corresponds to the first azimuthal mode may cross the imaginary axis
before the eigenvalue that correspond to the fundamental mode [15]. Hence, even for the
natural circulation system it is important that along with the SB a second “boundary” —along
which the second pair of complex conjugate eigenvalue has zero real part—be also plotted.
Relative magnitude of the elements in the eigenvector can then be used to identify whether it
is the in-phase or the out-of-phase mode that will become unstable as the SB is crossed.
Figures 5 and 6 also show the “second” boundaries (doted lines), on which the real part of the
second largest pair of eigenvalue is zero. For low system pressure (Figure 6), the two curves
do not cross, and the boundary for the azimuthal mode is always in the unstable region, where
the fundamental mode is unstable. However, Figure 5 shows that the boundary corresponding
to the largest eigenvalue for the fundamental mode and that corresponding to the first
azimuthal mode cross each other at point X (r ¢, =-0.0335, DTy= 8.65 K). Hence, the SB is

comprised of a segment along which the stability is lost due to the fundamental mode (to the

right of point X) and a small segment (to the right of point X) along which the first azimuthal
mode is crossed.
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Fig.6 SB and boundary of the second largest rea part when g, = 0.4 MPa

Characteristic difference of oscillations associated with the eigenvalues of the largest and
the second largest real parts is further illustrated by anayzing the eigenvalues and the
corresponding eigenvectors at four points on the SBs and the boundaries of the second largest
real parts. Point 1 (r .= -0.0278, DT, = 20.0 K) and point 2 (r ¢ = -0.0306, DTpe = 20.0
K) are on the stability map of system with Rr,,= 7.0 MPa; point 3 (r., = 0.0124, DT =
20 K) and point 4 (r,, =0.0179, DT, = 2.0 K) are on the stability map of system with
Ra = 04 MPa Table 1 lists the pure imaginary eigenvalues of the Jacobian &, and
magnitudes of elements corresponding to nqt) ad ny(t), Ev, and Ev, in the eigenvectors
at these points [Here, nq(t) IS the time-dependent coefficient of the fundamental neutron
mode, and n, ) is the time-dependent coefficient of the first azimuthal mode.]

Tablel Enag, EV, and Ev, at four operating points shown in Figure 5 and 6

Point 1 Point 2 Point 3 Point 4
Eireg +2.306 i +1.709 i +3.030i +4.079 i
EViy, 0.156 0.170x10™* 0.00972 0.110x1075
EVn, 0.943x107 0.0595 0.324x10"° 0.00530

For the points on the SB (points 1 and 3), the magnitude of nq(t) is much larger than those
of m(t); for the points on the boundaries corresponding to eigenvalue with the second largest
real parts (point 2 and 4), the magnitude of n,¢) is much larger than that of ny(t) . Results
listed in the Table 1 suggest very large amplitudes of oscillations of nq(t), but much smaller
amplitudes of oscillations of ) corresponding to the pure imaginary eigenvalues at
operating points 1 and 3. The pure imaginary eigenvalues at these two points, thus, are called
in-phase or fundamental mode eigenviaues. Similarly, amplitudes of oscillations of ) are
very large, while those of ny(t) are very small at operating points 2 and 4. These eigenvalues

are hence called out-of-phase or azimuthal mode eigenvlaues. Therefore, a characteristics
change in the nature of oscillation must be expected due to eigenvalue crossing at point X

(Figure 5). To the left of point X, segment A-X is the SB due to out-d-phase oscillations. To
the right of point X, segment X-B-C is the SB due to in-phase oscillations.



Parameter space in Figure 5 is divided by these boundaries of fundamental and first
azimuthal mode eigenvalues into four regions. In region I, both the fundamental and first
azimuthal modes are stable. Small perturbation will cause decreasing amplitude oscillations.
In region |1, the fundamental mode is unstable and the first azimuthal mode is stable. Small
perturbation will lead to in-phase oscillations. In region Ill, the first azimuthal mode is
unstable and the fundamental mode is stable. The oscillations are therefore out-of-phase. In
the last region (1V), both modes are unstable. Oscillations are therefore a combination of
in-phase and out- of -phase modes.

For low system pressure, instead of four regions, three regions of the parameter space are
identified. Both modes are stable in region I; fundamental mode is unstable and first
azimuthal mode is stable in region |1; and both modes are unstable in region 111 (Figure 6).

3.3 Bifurcation Analyses

In addition to in-phase and out-of -phase, the oscillation in a BWR can also be characterized
by whether they evolve to stable periodic oscillation or to unstable growing amplitude
oscillation [13]. As discussed in section 2.3, PAH bifurcation theorem provides us with
conditions that lead to on or the other. According to PAH-B theorem, if the periodic solution
(oscillation) isin unstable region, its amplitude is stable and the bifurcation is supercritical; if
it is in stable region, the amplitude is unstable and the bifurcation is subcritical. Nature of
PAH-B (supercritical or subcritical) along the SB can be represented by fixed amplitude
oscillation curves. Figure 7 and 8 show 7.5% oscillation curves for different segments of the
SBs of Figure 5 and 6 iN DTiye—( rex — Fexcriticar) PAra@mMeter space. The amplitude of

oscillations of the limit cycle along these curves is about 7.5% of the magnitude of
eigenvector elements. In Figure 7a, for the out -of -phase segment A-X, the oscillation curve is
in the unstable region, indicating a supercritical PAH-B aong the SB. From the out-of- phase
segment (A-X) of the SB to in-phase segment X-B, oscillation curve has a jump from the
unstable side to the stable side. For b, < 28.91 K, the oscillation curve of segment X -B is
in the stable region, and type of PAH-B is subcritical. For 28.91 < pr, < 31.42 K (point B),
the oscillation curve returns to the unstable region, and consequently type of PAH-B aong
this segment of the SB is supercritical. For segment B-C, Figure 7c show that oscillation
curve aong the B-C branch is always in the unstable region. Type of PAH-B aong this
segment is hence supercritical. Similar back-and-forth transitions from sub- to supercritical
bifurcations are observed for the low system pressure case. In Figure 8a, the type of
bifurcation is supercritical along the D-E branch of the SB. Along the E-F branch of the SB
(Figure 8b), when bt > 2.762 K, the bifurcation is supercritical; while for v, < 2.762

K, it is subcritical.
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For the out-of -phase segment A-X (Figure 7a) and low pr,, region of the in-phase
segment B-C (Figure 7c), deviation of r,, required for the 7.5% amplitude, are much
smaller than those for the segment X-B and high b, region of the segment B-C, indicating
that much larger amplitude oscillations (in-phase or out-df-phase) may result for the same
deviation along the SB of low subcooling than along that of high subcooling. Large amplitude
oscillation at lower inlet subcooling is due to longer two-phase regions in the channel and
riser. Similar trend can be found in the low system pressure case (Figure 8).

The change of characteristics of bifurcation (supercritical or subcritical) and change of
characteristics of oscillations (in-phase or outd - phase) along the SB, thus, reveal complexity
of the dynamic behavior of the coupled natural circulation BWR system.

3.4 Sensitivity Analysisfor Low System Pressure Case

Effect of operaing parameters other then b, and r,, onthe SBsiis investigated. Since behavior
of two-phase naturd cdirculdion systems under high system pressure conditions (close to 7.0 MPa) is
relatively better understood, we focus on sengtivity of operaing parameters when the sysem pressureis
reaivey low. To Sudy effect of sysem pressure, we plot SBSin DTy —r o« Parameter gpace for five
different vaues of p,;, (Figure 9a). Impact of a change in p,;, on sysdems with reaively large
pressure (Ry; = 1.5, 1.0 MPa) is different from that on systems at low pressure (R, = 04, 0.3, 0.2
MPa). Stable region decressss as  p,,;; decreases if the system pressure is rdaively high, especidly for
gndl vduesof r,.Thusadropin R, hasadedtabilizing effect under these conditions. If the sysem
pressureisrelativey low, however, adropin p,;, causesthe stable region to incresse. Therefore, instead
of destabilizing, it has a sahilizing effect on the dynamics of the sysem. Comparing these results with
those of pure therma-hydraulics modd [12], where adrop in system pressure is a destabilizing factor, this
new sabilizing effect can be attributed to the coupling between system thermakhydraulics and neutron
kinetics. At low systlem pressure, without neutronics coupling, smadl perturbation can quickly grow dueto
twaphese flow ingability. In the coupled system, however, void fraction feedback acts as a Sabilizing
force. Perturbations in void fraction lead to negative feedback of reectivity, which suppresses
thermal-hydraulic perturbations.
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Fig.9 Sengtivity andyssresultsfor different operating parameters. Out-df -phase otillaion SBsare
indicated by OP. A changein dope of the SB indicatestrangtion to in-phase SB.

Fgure 9% shows the effect of riser length L, , for R, = 04 MPacase In naurd dirculaion system,
increesng L, increases the driving force leading to higher flow rate. Therefore, it has astrong stebilizing
effect. However, Figure 9b dso showsthat out-df -phase oscillations are possible a low reactivity for long
risers Effect of pressure loss coeffident at riser outlet k, o, IS NOt as srong as those for Ry and L,
(Figure 9c), but SBs indicate the possihility of out-of -phase osaillations for low reectivity if k, ,,, iShigh.
Foure 9d shows the effect of an increese in pressure loss a the outlet of the core. Increesing ko
generdly tends to cause a loss of gahility. The last operating parameter sudied is the pressure loss
coefficient a the channd inlet, k. ;,. As shown in Figure e, increesing of k;,, has a strong stabilizing
effect.

3.5 Numerical Simulations

Numericd amulations are carried out to gain further ingght into the dynamics of the coupled system
as wdl as to examine the results obtained using BIFDD. Eight points on the stability maps of high and
low pressure systems are chosen for numerica smulations. These points are shown in FHgures 10a and
10b. Table 2 lids operating parameters as well as characterigtics of bifurcation and neture of osdllations
(inphase or out-af-phase) predicted by BIFDD.
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Table2 Operaing points for numerical smulations
Rt (MPa) Fext DTinee (K) | Characteridtics| Characteridtics
of odllaions | of PAH-B
Point a 7.0 -003413 6.0 Outof-phase | Supercritical
Point b 7.0 -0.03400 6.0 Outof-phase | Supercritica
Point ¢ 7.0 -002781 20.0 In-phese Subcritical
Point d 7.0 -0.00840 20.0 In-phese Supercritical
Point e 7.0 -0.00823 20.0 I n-phese Supercritical
Point f 04 0.01237 20 In-phese Subcritical
Point g 04 -002570 38 I nphese Supercritica
Point h 0.4 -0.02540 3.8 I n-phase Supercritica

Points a and b are dose to out-of-phase segment of the SB in Figure 10a Point ais in the ungtable
region, while point b is in sable region. Bifurcation dong this segment of the SB is supercritica. Figure
11 shows results of numericd smuldion for parameter vaues corresponding to point a As expected,
dable amplitude limit cyde of n,¢) and very amdl amplitude of nyt) result. Figure 12 (for point b)
shows decreasing amplitude osaillations for both ny(ty and ny(t) . Points ¢, d and e are dose to in-phese
segment of the SB. Bifurcation a point ¢ is subcritica; while those for points d and e are supercriticd.
Fgure 13, corresponding to point ¢, shows increesing amplitude of ny(t) (and decaying n,(t) ) for large
perturbation even though point ¢ is in the gable region conggtent with the subcritical neture of the
bifurcation. For point d (in sable region) and e (in ungable region), perturbations lead to decreasing
amplitude osdllations (point d) and gable limit cyde osaillaions (point €) for nyt) while decreasing
amplitude oscillationsresult for ny ) in both cases (Figure 14 and 15).

For the case of low system pressure, Figures 16, 17, and 18 show that osdillations & points f, g, and h
are in-phase as suggested by the sability andysis Large perturbation & point f, which is in the seble
region, causes increesing amplitude oscillation congdent with the subcriticd bifurcation there
Perturbations a point g (ungable region), and h (dable region) cause limit cyde and decreasing
amplitude oscillations, respectivey, for nyt) . Numericd smulations of sysem with high and low
system pressures agree with predictions of BIFDD stidfactorily.
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4. Summary

A new naurd-crrculaion BWR modd that alows loca pressure dependence of water ssturation
enthalpy and indudes fundamentd and first azimutha modes for neutronics has been developed ODEs
of this modd are derived through weighted resdud and variationd principle gpproaches. A nodalsze
sengtivity andyds shows that proper noddization is important to accuratdy capture the SB. Both
in-phase and out-of-phase oscillaions aswell as supercritical and subcritica bifurcations can occur dong
the SBs for both high and low system pressures. Sendtivity andyds of various operating parameters is
a0 caried out. It is shown thet increasing sysem pressure may lead to a more gable or a less dable
sysem depending upon the value of the absolute sysiem pressure. Increasing pressure loss coefficient a
the outlet of core or riser has a dedtabilizing effect, while increase of pressure loss coefficient & the core
inlet tes a gabilizing effect. Numerical smulation results confirm findings of gability and bifurcation
andysss
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